

EQUIVALENTS:

1 acre = 43,560 sq. ft. 1 cubic ft. = 7.48 gals Gals/ac-ft. = 325,828 1 gallon = 8.34 lbs

1 day = 1,440 minutes

1 MGD = 694.4 GPM, 1.55 CFS and

3.07 ac-ft/day

1.0% = 10,000 mg/L

 $\Pi = 3.14$

1 PSI = 2.31 ft. of water 1 Ft Water = 0.433 PSI/ft. 1 Hp = 0.746 Kw 1 cfs = 448.8 GPM

FORMULAS:

Areas

Area of a rectangle, sq. ft. = Length x width

Area of a circle, sq. ft. = 0.785 (D, ft.)²

Circumference, ft. = $\pi \times D$, ft.

Volumes

Rectangular

Basin, gals = L, ft. x W. Ft. x H, ft. x 7.48

Right Cylinder,

gals = 0.785 (D, ft.)² x H, ft x 7.48

Right cone,

gals = $\frac{0.785 \text{ (D, ft.)}^2 \text{ x H, ft x 7.48}}{3}$

Volume, gals = GPM x Time, minutes

Mass, Lbs / BOD / SS

Lbs/Day = MGD x mg/L x8.34 lbs/gal

mg/L = Lbs / day $MGD \times 8.34 lbs/gal$

Lbs = (Gals x 8.34 lbs/gal) x $\frac{\%}{100}$

Percentage (%)

Percent (%) = $\frac{In - Out}{In}$ x 100

Population Equivalent

Pop. Equiv. = Population x 0.17 lbs/capita/day BOD / 0.20 TSS

Hydraulic Loading

Hydraulic Loading = People x 100 GPCD

Velocity

Q, CFS = Area, sq. ft. x V, FPS Area, sq. ft. = Base, ft. x H, ft. FPS = <u>Distance, ft.</u>

FPS = <u>Distance, ft.</u> Time, seconds

Hydraulics

Head, ft. = $PSI \times 2.31 \text{ ft./PSI}$

 $PSI = \underline{\text{Head, ft.}}$ 2.31 ft./PSI

Pumps & Motors

Bhp = $\frac{\text{GPM x Head, ft.}}{3,960 \text{ x } \% \text{ Pump Efficiency}}$

Motor, Effic. = Water Hp (Motor, % x Pump, %) 100 100

Cost/day = Bhp x 0.746 kw/Hp x Operating
Hours x <u>¢ / kw - hr</u>
100

Sludge Vol, GPM = 0.785 (Bore, ft.)² x Stroke, ft x 7.48 x stroke/min x %, Effic.

Solutions

 $GPD = \frac{MGD \times mg/L \times 8.34}{\frac{\% \text{ sol}}{100}} \times 8.34 \times Sp. \text{ Gravity}$

Lbs/gal = $\frac{\% \text{ sol}}{100}$ x 8.34 x Sp. Gravity

 $(Q_3V_3) = (Q_1V_1) + (Q_2V_2)$

Clarifiers

D.T., Hrs. = $\frac{\text{Volume gals } \text{x } 24 \text{ Hrs/day}}{\text{Flow, GPD}}$

S.S.L., GPD/sq. ft. = $\frac{\text{Total flow, GPD}}{\text{Surface area, sq. ft.}}$

W.O.R., GPD/L.F. = $\underline{\text{Total flow, GPD}}$ $\pi \times D$, ft.

Dry Sludge = (Gals x 8.34) x <u>Sludge %</u> solids, lbs 100

Ponds & Lagoons

Volume, ac-ft. = Area, acres x Depth, ft.

O.L.R., lbs/day/acre = $\underline{\text{MGD x mg/L x 8.34}}$ Pond, acres

D.T., Days = Volume, ac-ft Flow, ac-ft/day

Inches/Day = Volume In, GPD x 12"/ft.

Acres x 325,828 gals/ac-ft.

MGD = <u>Acres x 325,828 gals/ac-ft</u> 1,000,000 gals/MGD

Trickling Filters

O.L.R., = $\frac{\text{MGD x mg/L x 8.34}}{\text{Vol, cu ft.}}$ Vol, cu ft./ 1,000 cu. ft.

Hydraulic = <u>GPD</u>
Loading Rate, Surface area, sq. ft.
GPD/sq. ft.

Recirculation ratio = $\frac{\text{Recirc.}, Q, GPD}{Q, In, GPD}$

Activated Sludge

 $F/M = \frac{MGD \times mg/L \times 8.34 \text{ lbs/gal}}{MGD \times MLSS, mg/L \times \% \text{ Vol.}} \times 8.34$ Aerator

MLSS, mg/L = $\frac{\text{MGD x mg/L x 8.34 lbs/gal}}{\text{MGD x F/M x % Vol. x 8.34}}$ Aerator

DAF Units

Air / Solids ratio = Air, lbs/minute
Solids, lbs/minute

MCRT, Days = $\underline{MGD \times mg/L \times 8.34}$ + $\underline{MGD \times mg/L \times 8.34}$ $\underline{MGD \times WAS mg/L \times 8.34}$ + $\underline{MGD \times mg/L \times 8.34}$

TSS = <u>Aeration Tnk, Lbs + Clar. Lbs</u> – Eff. lbs Wasted, lbs/day MCRT, Days

GPD Wasted = <u>TSS, Lbs/day</u> x 1,000,000 MGD x 8.34 lbs/gal

SVI = Settled Volume, ml x 1,000 mg/G MLSS, mg/L

 $SDI = \frac{100}{SVI}$

RAS, $\% = Q \times \underline{MLSS, mg/L} \times 100$ RAS, mg/L - MLSS, mg/L

Anaerobic Digesters

VS Reduced = (%Vs, in - %Vs Out) x 100 %Vs, in - (%Vs, in x %Vs Out)

VS, Loading = Sludge Feed, VS, lbs/day
Digester Vol, cu. ft.

D.T., Days = <u>Digester Volume</u> Sludge feed

VA / ALK Ratio = Volatile acids, mg/L Alkalinity, mg/L

VS Lbs = $(Gals \times 8.34) \times \frac{TS \%}{100} \times \frac{VS\%}{100}$

Filtration

Filtration = Area, sq. ft. x Rate, GPM/sq. ft. Rate, GPM

Disinfection- Chlorine

Lbs/day = MGD x mg/L x 8.34 lbs/gal

65% Lbs/day = $\underline{\mathsf{MGD} \times \mathsf{mg/L} \times 8.34 \; \mathsf{lbs/gal}}$ 0.65

 $GPD = \frac{MGD \times mg/L \times 8.34}{\frac{\% \text{ sol}}{100}} \times 8.34 \times Sp. \text{ Gravity}$

Dosage, mg/L = Demand, mg/L + Residual, mg/L

Laboratory

BOD = D.O. In mg/L – Final D.O. mg/L x 300 Sample Volume, ml